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Abstract

We present the development and validation of a new multivariate b jet identification algorithm
(“b tagger”) used at the CDF experiment at the Fermilab Tevatron. At collider experiments, b tag-
gers allow one to distinguish particle jets containing B hadrons from other jets. Employing feed-
forward neural network architectures, this tagger is unique in its emphasis on using information
from individual tracks. This tagger not only contains the usual advantages of a multivariate tech-
nique such as maximal use of information in a jet and tunable purity/efficiency operating points,
but is also capable of evaluating jets with only a single track. To demonstrate the effectiveness of
the tagger, we employ a novel method wherein we calculate the false tag rate and tag efficiency as
a function of the placement of a lower threshold on a jet’s neural network output value in Z + 1 jet
and tt̄ candidate samples, rich in light flavor and b jets, respectively.
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1. Introduction

The identification of jets originating from
b quarks is an important part of many analy-
ses at high-energy physics colliders. Searches
for the Higgs boson and measurements of top-
quark properties depend on the ability to iden-
tify b jets properly. Furthermore, in many new
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physics models, the third generation holds a
special role, and therefore final states with b-
quark jets are common. The high momentum
of B hadrons coupled with their long lifetimes
results in a long decay length. Additionally, a
significant fraction (≈20%) of B hadrons de-
cay with a soft lepton, i.e., a charged lepton
with a few GeV of momentum. These quali-
ties are key to distinguishing b-quark jets from
other types of jets.

Almost all information as to whether or not
a given jet originates from a B-hadron decay is
carried in the tracks its charged particles leave
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in the detector. There are a few salient features
of B-hadron decays which can be searched for
via the tracks in a jet. The mean decay length
of a B0 (B±, Λb) hadron is 460 µm (501 µm,
367 µm). These distances can be resolved
by the CDF tracking system, and it is there-
fore possible to identify the delayed decay of
a B hadron through the displacement of indi-
vidual tracks with respect to the primary in-
teraction point (the primary vertex) and also
through the combining of tracks in the form
of a fitted secondary decay vertex. Due to the
large mass of the b quark, the decay products
of B hadrons will form a larger invariant mass
than those of hadrons not containing b quarks.
Furthermore, the large relativistic boost typi-
cal of a B hadron will result in decay prod-
ucts which tend to be more energetic and col-
limated within a jet cone than other particles.
Finally, particle multiplicities tend to be differ-
ent for jets containing B-hadron decays com-
pared to other jets; in particular, muons and
electrons appear in approximately 20% of jets
containing a B hadron, typically either directly
via semileptonic decay of the B or indirectly
through the semileptonic decay of a D or Λc

resulting from a B decay.
Many algorithms used at CDF were in-

strumental in the 1995 discovery of the top
quark [1]. Here we review the standard b-
tagging algorithms used at CDF. Similar tech-
niques as those described in this paper have
been developed at the D0 experiment [2] and
at the CMS and ATLAS experiments at the
LHC [3, 4].

SecVtx [5] is a secondary vertex tagger. It
is the most commonly used b tagger at CDF.
Using only significantly displaced tracks that
pass certain quality requirements within each
jet’s cone, an iterative method is used to fit a
secondary vertex within the jet. Given the rel-
atively long lifetime of the B hadron, the sig-
nificance of the two-dimensional decay length

Lxy in the r-φ plane is used to select b-jet can-
didates. The algorithm can be performed with
different sets of track requirements and thresh-
old values. In practice, three operating points
are used, referred to as “loose”, “tight”, and
“ultra tight”.

The jet probability [6] tagger on the other
hand does not look for a secondary vertex, but
instead uses the distribution of the impact pa-
rameter significance of tracks in a jet, where
impact parameter significance is defined as the
impact parameter divided by its measured un-
certainty (d0/σd0). By comparing these val-
ues to the expected distribution of values from
light jets, it is possible to determine the frac-
tion of light jets whose tracks would be more
significantly displaced from the primary ver-
tex than those of the jet under study. While
light-flavor jets should yield a fraction uni-
formly distributed from 0 to 1, due to the long
B lifetime, b jets often produce significantly
displaced tracks and hence tend toward a frac-
tion of 0. Although this algorithm produces a
continuous variable for discriminating b jets,
in practice only three operating points are sup-
ported (jet probability < 0.5%, 1%, and 5%).

Soft-lepton taggers [7] take a different ap-
proach to b tagging. Rather than focusing on
tracks within a jet, they identify semi-leptonic
decays by looking for a lepton matched to a
jet. The branching ratio of approximately 10%
per lepton makes this method useful; however,
if used alone, this class of tagger is not com-
petitive with the previously mentioned taggers.
Because a soft-lepton tagger does not rely on
the presence of displaced tracks or vertices, it
has a chance to identify b jets that the other
methods cannot. In practice in CDF only
the soft muon tagger is used since high-purity
electron or tau identification within jets is very
difficult.

Neural networks (NNs) can use as many fla-
vor discriminating observables as is computa-
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tionally feasible; hence the efficiency of NN
taggers is often equal to or greater than that of
conventional taggers for a given purity. One
such NN-based algorithm at CDF, called the
“KIT flavor separator” [8], analyzes SecVtx-
tagged jets and identifies secondary vertices
that are likely from long-lived B hadrons, sep-
arating them from jets with secondary vertices
that originate from charm hadrons or that are
falsely reconstructed. This flavor separator has
been used in many CDF analyses, notably in
the CDF observation of single top quark pro-
duction [9]. Another NN-based algorithm, the
“Roma tagger” [10, 11], has been used at CDF
in light Higgs searches. While the SecVtx tag-
ger attempts to find exactly one displaced ver-
tex in a jet, the Roma tagger uses a vertex-
ing algorithm that can find multiple vertices,
as may be the case when multiple hadrons de-
cay within the same jet cone (for example, in
a B → D decay). Three types of NNs are
used: one to distinguish heavy from light ver-
tices, another to distinguish heavy-candidate
from light-candidate unvertexed tracks, and a
third that takes as inputs the first two NN out-
puts along with other flavor discriminating in-
formation, including SecVtx and jet probabil-
ity tag statuses, number of identified muons,
and vertex displacement and mass informa-
tion. The performance of the Roma tagger is
roughly equivalent to SecVtx at its operating
points but allows for an “ultra loose” operat-
ing point yielding greater efficiency, useful in
certain analyses.

In this paper we describe a new tagger that
builds on the development of these taggers us-
ing feed-forward NN architectures. The NNs
provide the ability to exploit correlations in
many variables. The tagger is unique in its
emphasis on individual tracks, and in its abil-
ity to evaluate jets with only a single track.
Each track’s potential for having come from
a B-hadron decay is evaluated by a NN, and

the outputs of this NN are fed into a jet-wide
NN along with other jet observables such as
the significance of the displacement of the sec-
ondary vertex. The output of this NN, which
we call the jet bness, is designed to identify
jets containing a B-hadron decay. The conti-
nuity of the NN output value allows for a tun-
able operating point corresponding to the de-
sired purity and efficiency.

To characterize the tagger’s performance,
the efficiency and mistag rate are obtained as
a function of the jet bness cut in Z + 1 jet (rich
in light flavor jets) and tt̄ (rich in b jets) candi-
date samples. This choice of data samples dif-
fers from many previous evaluations of perfor-
mance using generic di-jet samples. The large
data sample accumulated at the Tevatron allow
us to use the more pure top quark samples for
b tagging efficiency studies. The ultimate use
of this tagger is aimed at searches for stan-
dard model dibosons and Higgs bosons. The
momentum spectrum of b quarks in top pair
production is better matched to these searches
than the relatively soft quark momentum spec-
trum found in generic di-jet samples. Fi-
nally, since our tagger will incorporate infor-
mation from many different tagging methods,
techniques that, for instance, use soft lepton-
tagged jets as an input to an efficiency mea-
surement for displaced-vertex taggers cannot
be used.

2. The CDF Detector

The CDF II detector is described in de-
tail elsewhere [12]. The detector is cylindri-
cally symmetric around the proton beam line2

2The proton beam direction is defined as the positive
z direction. The polar angle, θ, is measured from the ori-
gin of the coordinate system at the center of the detector
with respect to the z axis, and φ is the azimuthal angle.
Pseudorapidity, transverse energy, and transverse mo-
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with tracking systems that sit within a super-
conducting solenoid which produces a 1.4 T
magnetic field aligned coaxially with the pp
beams. The Central Outer Tracker (COT) is a
3.1 m long open cell drift chamber which per-
forms 96 track measurements in the region be-
tween 0.40 and 1.37 m from the beam axis,
providing coverage in the pseudorapdity re-
gion |η| ≤ 1.0 [13]. Sense wires are arranged
in eight alternating axial and ±2◦ stereo “su-
perlayers” with 12 wires each. The position
resolution of a single drift time measurement
is about 140 µm.

Charged-particle trajectories are found first
as a series of approximate line segments in the
individual axial superlayers. Two complemen-
tary algorithms associate segments lying on a
common circle, and the results are merged to
form a final set of axial tracks. Track segments
in stereo superlayers are associated with the
axial track segments to reconstruct tracks in
three dimensions.

The efficiency for finding isolated high-
momentum tracks is measured using electrons
from W± → e±ν decays identified in the
central region |η| ≤ 1.1 using only calori-
metric information from the electron shower
and the missing transverse energy. In these
events, the efficiency for finding the electron
track is 99.93+0.07

−0.35%, and this is typical for
isolated high-momentum tracks from either
electronic or muonic W decays contained in
the COT. The transverse momentum resolu-
tion of high-momentum tracks is δpT/p2

T ≈

0.1% (GeV/c)−1. Their track position resolu-
tion in the direction along the beam line at the
origin is δz ≈ 0.5 cm, and the resolution on the
track impact parameter, the distance from the

mentum are defined as η=− ln tan(θ/2), ET =E sin θ, and
pT =p sin θ, respectively. The rectangular coordinates x
and y point radially outward and vertically upward from
the Tevatron ring, respectively.

beam line to the track’s closest approach in the
transverse plane, is δd0 ≈ 350 µm.

A five layer double-sided silicon microstrip
detector (SVX) covers the region between 2.5
to 11 cm from the beam axis. Three separate
SVX barrel modules along the beam line cover
a length of 96 cm, approximately 90% of the
luminous beam interaction region. Three of
the five layers combine an r-φmeasurement on
one side and a 90◦ stereo measurement on the
other, and the remaining two layers combine
an r-φ measurement with small angle stereo
at ±1.2◦. The typical silicon hit resolution is
11 µm. Additional Intermediate Silicon Lay-
ers (ISL) at radii between 19 and 30 cm from
the beam line in the central region link tracks
in the COT to hits in the SVX.

Silicon hit information is added to COT
tracks using a progressive “outside-in” track-
ing algorithm in which COT tracks are extrap-
olated into the silicon detector, associated sil-
icon hits are found, and the track is refit with
the added information of the silicon measure-
ments. The initial track parameters provide a
width for a search road in a given layer. Then,
for each candidate hit in that layer, the track is
refit and used to define the search road into the
next layer. This stepwise addition of precision
SVX information at each layer progressively
reduces the size of the search road, while also
accounting for the additional uncertainty due
to multiple scattering in each layer. The search
uses the two best candidate hits in each layer to
generate a small tree of final track candidates,
from which the tracks with the best χ2 are se-
lected. The efficiency for associating at least
three silicon hits with an isolated COT track
is 91 ± 1%. The extrapolated impact param-
eter resolution for high-momentum outside-
in tracks is much smaller than for COT-only
tracks: 30 µm, including the uncertainty in the
beam position.

Outside the tracking systems and the
4



solenoid, segmented calorimeters with projec-
tive geometry are used to reconstruct electro-
magnetic (EM) showers and jets. The EM
and hadronic calorimeters are lead-scintillator
and iron-scintillator sampling devices, respec-
tively. The central and plug calorimeters
are segmented into towers, each covering a
small range of pseudorapidity and azimuth,
and in full cover the entire 2π in azimuth
and the pseudorapidity regions of |η|<1.1 and
1.1<|η|<3.6 respectively. The transverse en-
ergy ET , where the polar angle is calculated
using the measured z position of the event ver-
tex, is measured in each calorimeter tower.
Proportional and scintillating strip detectors
measure the transverse profile of EM showers
at a depth corresponding to the shower maxi-
mum.

High-momentum jets, photons, and elec-
trons leave isolated energy deposits in contigu-
ous groups of calorimeter towers which can be
summed together into an energy cluster. Elec-
trons are identified in the central EM calorime-
ter as isolated, mostly electromagnetic clusters
that also match with a track in the pseudora-
pidity range |η| < 1.1. The electron trans-
verse energy is reconstructed from the electro-
magnetic cluster with precision σ(ET )/ET =

13.5%/
√

ET (GeV) ⊕ 2%, where the ⊕ sym-
bol denotes addition in quadrature. Jets are
identified as a group of electromagnetic and
hadronic calorimeter clusters using the jet-
clu algorithm [14] with a cone size of 0.4.
Jet energies are corrected for the calorimeter
non-linearity, losses in the gaps betwen tow-
ers, multiple primary interactions, the under-
lying event, and out-of-cone losses [15]. The
jet energy resolution is approximately σET =

1.0 GeV + 0.1 × ET

Directly outside of the calorimeter, four-
layer stacks of planar drift chambers detect
muons with pT > 1.4 GeV/c that traverse
the five absorption lengths of the calorime-

ter. Farther out, behind an additional 60 cm
of steel, four layers of drift chambers detect
muons with pT > 2.0 GeV/c. The two systems
both cover a region of |η| ≤ 0.6, though they
have different structure and their geometrical
coverages do not overlap exactly. Muons in the
region between 0.6 ≤ |η| ≤ 1.0 pass through at
least four drift layers lying in a conic section
outside of the central calorimeter. Muons are
identified as isolated tracks in the COT that ex-
trapolate to track segments in one of the four-
layer stacks.

3. Description of the neural network

All neural networks are trained using simu-
lated data samples. The geometric and kine-
matic acceptances are obtained using a geant-
based simulation of the CDF II detector [16].
For the comparison to data, all sample cross
sections are normalized to the results of NLO
calculations performed with the mcfm v5.4
program [17] and using the cteq6m parton dis-
tribution functions [18].

3.1. Basic track selection

A great deal of information as to whether
a jet contains a B-hadron decay is contained
within the jet’s individual tracks. Indeed,
as described earlier, the jet probability algo-
rithm [6] uses information solely based on
the significance of the impact parameters of
tracks. Furthermore, an important choice to
make when seeking displaced vertices is which
tracks to use as candidates for a fit. In light
of this, our tagger takes a ground-up approach
where the first step in the evaluation of how b-
like a jet is involves using a neural network to
discriminate B-hadron decay tracks from other
tracks in a jet. We use relatively loose criteria
when selecting which tracks to evaluate with
our track-by-track NN, thereby improving the
b-tagging efficiency. We reject tracks that use

5



hits only in the COT, as the COT alone has in-
sufficient resolution to distinguish the effects
of the displacement of a B-hadron decay from
the primary vertex. Additionally, a track must
have a pT > 0.4 GeV/c, a requirement CDF
maintains for all tracks, and be found within
a cone of ∆R < 0.4 about the jet axis, where
∆R =

√
(∆φ)2 + (∆η)2. Finally, for tracks

within a jet, track pairs are removed if they
are oppositely charged, form an invariant mass
within 10 MeV of that of a KS (0.497 GeV/c2)
or Λ (1.115 GeV/c2), and can be fit into a two-
track vertex. This requirement is included to
reject non-b jets that contain these long-lived
particles, as they can mimic b jets, compro-
mising our purity.

3.2. The track neural network
The two primary categories of input vari-

ables to the track-by-track NN are observ-
ables related to the displacement of the track
from the primary vertex and observables re-
lated to the kinematics of the track. The for-
mer category includes the track’s signed im-
pact parameter3 (d0), its z displacement (z0)
from the primary vertex, and the significances
of these two quantities, given their uncertain-
ties (d0/σd0 and z0/σz0). The latter category
takes advantage of the fact that tracks from
B-hadron decays have a somewhat harder pT

spectrum than other tracks, and are more colli-
mated within a jet. This category includes the
track’s pT , its pseudorapidity (ηaxis) with re-
spect to the jet axis, and its momentum (pperp)
perpendicular to the jet axis.

A final input variable to the track-by-track
bness NN is the ET of the jet, since distribu-
tions of the track observables are correlated

3We define the signed impact parameter of a track as
positive if the angle between the candidate b-jet direc-
tion and the line joining the primary vertex to the point
of closest approach of the track to the vertex is less than
90◦, and as negative otherwise.

with their parent jet ET . To ensure that the
distributions of track observables used to train
the track-by-track NN are not kinematically
biased, B hadron and non-B hadron tracks are
weighted in training to have the same parent
jet ET distribution.

Figure 1 shows distributions of the track
variables in pythia [19] ZZ → j j j j Monte
Carlo simulations (MC) for tracks matched
by ∆R < 0.141 to particles that come from
B-hadron decays compared to tracks in jets
which are not matched to B hadrons. These
figures indicate that the displacement variables
tend to give more discrimination power than
the kinematic variables; in particular, the im-
pact parameter variables are the most impor-
tant inputs to the NN.

The NN is a feed-forward multilayer per-
ceptron with a single output and two hidden
layers of 15 and 14 nodes implemented us-
ing the MLP algorithm from the TMVA pack-
age [20]. The same number of signal and back-
ground events was used in the training. The
performance of the NN was similar with larger
numbers of hidden layer nodes.

3.3. The jet neural network
To determine how b-like a jet is, we train a

NN to distinguish jets containg B-hadron de-
cays from those not containing B-hadron de-
cays. Many of the input variables come di-
rectly from the track-by-track NN described
in the previous section: the NN values of the
five most b-like tracks (bi, i = 0..4), as well as
the number (ntrk) of tracks with a NN output
greater than 0.

We use tracks with track-by-track NN val-
ues greater than -0.5 in the fitting of a sec-
ondary vertex. An initial fit is performed with
all such tracks; if the largest contribution to the
total fit χ2 from any of them exceeds a value of
50, it is removed, and the remaining tracks are
re-fit. This process continues until either the
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Figure 1: Inputs used in the neural network for calculating the per-track bness. The red dashed line is signal and the
black solid line is background. The y-axis is in arbitrary units.
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Figure 2: The most relevant inputs used in the neural network for calculating the per-jet bness. The red dashed line is
signal and the black solid line is background. bi refers to the bness of the ith track, ordered in bness. The y-axis is in
arbitrary units.
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largest χ2 contribution from any track is less
than 50, or there are fewer than two tracks to
be fit. If a secondary vertex is successfully fit,
then the significance of its displacement from
the primary vertex (Lxy/σLxy) and the invariant
mass (mvtx) of the tracks used to fit it both serve
as inputs into the NN.

Additionally, because a much higher frac-
tion of b jets than non-b jets contain KS par-
ticles, the number of KS candidates found is
used as an input to the jet-by-jet NN. Finally,
if there is a muon candidate in the jet cone,
its likelihood to be a true muon is used as an
input. This value is calculated using the soft
muon tagger [7] described above. The archi-
tecture of the jet-by-jet NN is similar to that of
the track-by-track NN, with two hidden layers
of 15 and 16 nodes. As in the track NN, to
avoid a kinematic bias, the parent jet ET distri-
butions are weighted to be equal and also input
into the NN.

Distributions of the most important jet-by-
jet NN input variables are shown in Figure 2.
Distributions of the NN output are shown in
Figure 3.

The training for the track NN as well as the
jet NN is performed using jets, from a pythia
ZZ MC sample, matched to b quarks from
Z → bb̄ events for signal and jets not matched
to b quarks for background.

Fig. 4 shows an estimate of the performance
of the full tagger derived from simulated data
of di-jet events, where the jets are b jets. We
select the jet with the highest bness score and
require b > 0.85. The tagging efficiency
ranges from 38% at low transverse momentum
to more than 50% at higher momentum. The
efficiency is flat in the central region (|η| < 1.0)
and drops outside the acceptance of the central
part of the tracking system.

4. Selection for Mistag Rate and Efficiency
Determination

In order to use this new b tagger in anal-
yses, we determine the efficiency and false
tag (“mistag”) rate as a function of a minimal
bness requirement, e(b) and m(b) respectively.
We use comparisons between data and Monte
Carlo simulation to evaluate these quantities
and their uncertainties. Also, we evaluate
the efficiency and mistag rate in Monte Carlo
(eMC(b) and mMC(b), respectively), and de-
termine the necessary scale factor, se(b) =

e(b)/eMC(b) (with a similar definition for the
mistag rate), to correct the simulation.

Following the procedure described in Ap-
pendix A and Appendix B, we must choose
two independent regions in which to deter-
mine the mistag rate and efficiency of the b
tagger. To reduce uncertainties, it is best to
choose a well-modelled region dominated by
falsely tagged jets (where we expect few b jets)
and a well-modelled region rich in b jets. For
the former, we choose events containing two
oppositely charged electrons or muons likely
from the decay of a Z boson, plus one jet.
For the latter, we choose events containing the
decay of a pair of top quarks, where we re-
quire exactly one lepton, at least four jets, and
a large imbalance in transverse momentum in
the event, indicating the likely presence of a
neutrino. We expect that the two jets with the
highest bness values in this sample will very
likely be b jets. The cuts applied for these two
selection regions are described in Table 1. We
use the 6ET significance, as defined in [21, 22],
to reduce any contribution from multi-jet pro-
duction where a jet is mis-identified as an elec-
tron or muon.4

4 We define the missing transverse momentum ~6ET≡

−
∑

i Ei
Tni, where ni is the unit vector in the azimuthal

plane that points from the beamline to the ith calorime-
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Z + 1 jet Selection
Nleptons = 2, both electrons or both muons

Leptons have opposite charge
∆z0 between leptons < 5 cm

Lepton pT > 20 GeV/c
75 GeV/c2 < Mll < 105 GeV/c2

6ET < 25 GeV
Reconstructed pT (Z) > 10 GeV/c

Njets(ET > 10 GeV) = 1
Jet ET > 20 GeV, |η| < 2.0

tt̄ Selection
Nleptons = 1

Lepton pT > 20 GeV/c
6ET > 20 GeV

6ET -significance > 1(3) for µ(e) events
Reconstructed MT (W) > 28 GeV/c2

Highest two bness jets’ ET > 20 GeV
Njets(ET > 15 GeV) ≥ 4

Total sum ET > 300 GeV

Table 1: Summary of event selection requirements for the Z + 1 jet and tt̄ samples. The total sum ET is defined as the
sum of the lepton pT , 6ET , and ET of all jets with ET > 15 GeV.

Electrons Muons
Z + 1 jet selection

Data Events 9512 5575
MC Events 9640± 880 5540± 490
tt̄ Selection

Data Events 507 835
MC Events 542± 56 862± 85

Table 2: Number of events in data and MC in the Z + 1 jet selection region, after proper scale factors have been
applied. The uncertainties on the MC reflect only the two dominant systematic uncertainties: the uncertainty on the
jet energy scale and the uncertainty on the luminosity. Overall, the agreement in number of events is good.

These events are selected by high-pT elec-
tron and muon triggers. We use data corre-
sponding to an integrated luminosity of 4.8
fb-1. We use alpgen [23], interfaced with
pythia for parton showering, to model W and
Z plus jets samples and pythia to model tt̄ and
other processes with small contributions. We
check the trigger efficiency against a sample
of Z → e+e− or µ+µ− events without jets. Ta-
ble 2 contains a summary of the total number
of events.

ter tower. We call the magnitude of this vector 6ET . The
6ET significance is a measure of the ratio of the value of
6ET to its uncertainty, and tends to be small for 6ET due
to mismeasurement rather than due to undetected, long-
lived neutral particles such as neutrinos.

5. Mistag Rate Determination

Figure 5 shows the jet bness distribution
for jets in the Z + 1 jet sample. The sam-
ple is dominated by light-flavor jets, but there
is a significant contribution of real b jets at
higher bness values, coming from Z + bb̄ pro-
duction. This is seen more clearly in Fig-
ure 6, where we separate the MC jets based on
whether there are generator-level b quarks lo-
cated within each jet’s cone (∆R = 0.4). Also
shown is the b-jet purity (Nb-jets/Njets(b)) as a
function of lower threshold on jet bness. We
see the b-jet incidence rate reaches above 60%
for the highest bness cuts, and thus we will
expect the uncertainties in the mistag rate to
be substantially higher there, due to both the
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small sample of available jets and the high
contamination rate combined with the uncer-
tainty on the number of b jets in that smaller
sample.

The mistag rate for jets above a given bness
threshold is simply the fraction of non-b jets
above that threshold. To obtain this quantity,
we use the fraction of jets in data above that
threshold (mraw(b)), but must correct this quan-
tity for the expected number of b jets in our
Z + 1 jet sample. We obtain an estimate of
this b jet contamination from MC simulation,
and obtain the corrected mistag rate, m(b). We
show the values of m(b) as well as the relative
difference between the mistag rate in data and
MC (sm(b) − 1) in Figure 7.

We can also calculate the uncertainty on the
mistag rate given the error on the b-tagging
efficiency and the uncertainty on the fraction
of b jets in our Z + 1 jet sample. The former
is determined through iterative calculations in-
corporating the tt̄ selection, while the latter we
take to be 20% [24]. The resulting uncertain-
ties are also shown in Figure 7.

6. Tagging Efficiency Determination

We use our tt̄ selection, described in Sec-
tion 4 and Table 1, to calculate the efficiency
from a sample of jets with high b purity. As
these events have many jets, we order the jets
by decreasing bness value. This mirrors the
procedure in a related analysis using this b tag-
ger [25] and provides values for the b-tagging
efficiency while accounting for this sorting
procedure. Figure 8 shows the jet bness dis-
tributions in data and MC for the two jets with
highest bness in each event. The agreement
here is very good, and regions of high bness
are almost exclusively populated by tt̄ events,
indicating that our b tagger is properly iden-
tifying b jets. We check that the purity of b
jets as a function of the cut on the jet bness

in these distributions is also high by splitting
jets into matched and non-matched categories
(Figure 9), as done for the Z + 1 jet selection
described in Section 5. We see that the b-jet
purity of the tt̄ sample is rather high, even for
low bness thresholds.

We calculate the efficiency of a given bness
threshold and its uncertainty in an analogous
way to the calculation of the mistag rate, de-
scribed in detail in Appendix B. We show the
calculated efficiencies and uncertainties for the
highest and 2nd highest bness jets in Figure 10,
and we show the relative difference between
the efficiency in data and MC (the quantity
se(b)− 1) and its uncertainty in Figure 11. Un-
certainties on the efficiency are on the order
of 10% or less, comparable to the uncertain-
ties on scale factors for the SecVtx b tagger.
Table 3 lists the efficiency and mistag rates in
data and MC for a chosen operating point—the
highest jet bness > 0.85, and the 2nd highest
jet bness > 0.0—along with the relative differ-
ence between data and MC, and the error on
that difference. Figure 12 shows the relation-
ship between the calculated efficiency of iden-
tifying b jets with a cut on the jet bness and
the rejection power of that cut for non-b jets
for the highest and 2nd highest bness jets in an
event.

While direct comparisons with the SecVtx
tagger are difficult, due to the sorting by bness
we use in our selections, the efficiency and
mistag rates at these operating points compare
favorably to the SecVtx tagger for the jets in
the MC of our tt̄ selection. The “tight” SecVtx
tagger operating point on this sample of jets
has an efficiency of 0.59 and a mistag rate of
0.052, while the “loose” operating point has an
efficiency of 0.68 with a mistag rate of 0.088.
For the highest bness jet cut at > 0.85, we
have an efficiency in our MC near to the loose-
tag efficiency (0.68), but a lower mistag rate
(0.009) than the tight SecVtx tag; for the 2nd
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Figure 5: A comparison of the jet bness in data and MC in the Z + 1 jet selection region. The MC is able to reproduce
the main features of the bness distribution in data. We use this distribution to determine the mistag rate for placing a
cut on jet bness in data, and use the differences between data and MC to determine corrections to the mistag rate in
MC.
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dashed green line) as a function the jet bness. We see our simulation typically under-predicts the mistag rate measured
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Figure 8: Jet bness of the first (left) and second (right) jet, as ordered by bness, in the tt̄ lepton + jets selection region.
The simulation reproduces most of the features of the data, and we see much of the b-enriched samples clustered
towards high bness.
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lepton + jets sample, with the portion of the MC jets matched to b quarks (purple dashed line) shown independently.
Top Right: The b-jet purity for a given bness cut on the highest jet bness, as determined from matched jets in the
MC. Bottom Left: A comparison of the second highest jet bness in data (black points) and MC (green solid line) in
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independently. Bottom Right: The b-jet purity for a given bness cut on the second highest jet bness, as determined
from matched jets in the MC. In these plots, we see a high purity in our chosen sample, which is approximately 55%
tt̄ events.
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Figure 11: The difference in efficiency between data and Monte Carlo (center solid line) and its uncertainty (dashed
lines) relative to the efficiency in the Monte Carlo as a function of the cut on jet bness for the highest (left) and 2nd

highest (right) bness jets in an event. The value of the scale factors and their uncertainties at the relevant bness cuts in
this analysis are summarized in Table 3.
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Quantity bness Cut Data MC % Difference % Error
Mistag Rate 0.0 0.0819 0.0720 14% 4.1%

0.85 0.00997 0.00869 15% 21%
Tag Efficiency 0.0 0.622 0.684 −9.0% 8.7%

0.85 0.652 0.687 −5.2% 6.2%

Table 3: Mistag rates and efficiencies on jet bness cuts determined from comparisons of data and MC in our Z + 1 jet
and tt̄ control regions. For the bness cut at 0.85, we consider the highest bness jet, and for the bness cut at 0.0, we
consider the 2nd highest bness jet in our tt̄ sample.
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Figure 12: Plots of the non-b-jet rejection versus the b-jet efficiency for a range of a cuts on jet bness for the highest
(left) and 2nd highest (right) bness jets in an event.

highest bness jet cut at > 0.0, we have a sim-
ilarly high efficiency (0.62) while allowing a
mistag rate similar to the loose SecVtx tag
(0.082).

7. Conclusion

We have described a neural network based b
tagger in current use at the Fermilab Tevatron’s
CDF experiment. By examining all the tracks
associated with jets, this tagger has a larger ac-
ceptance than previous neural network based
taggers at CDF. Furthermore, the tagger is cal-
ibrated using data from Z boson decays and
events containing top quark pair production—
a novel method which yields small system-
atic uncertainties on the tagging efficiency and
mistag rate. Finally, the utility of this tagger

has been demonstrated in a measurement of
the ZZ and WZ production cross sections [25].
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Appendix A. Evaluation of Mistag Rate
and Efficiency

For any given selection of data, we can cal-
culate the mistag rate (where all non-b jets are
considered mistags) if we know the number NB

of b jets, the number NB(b) of b jets above the
threshold bness, the total number N of jets, and
the total number N(b) of jets above the bness
cut threshold:

m(b) =
N(b) − NB(b)

N − NB
. (A.1)

We may use MC to determine the fraction fB

of jets that are b jets, and the efficiency eMC(b)
for these jets to pass the bness cut. This effi-
ciency may need to be modified by a scale fac-
tor se(b) = e(b)/eMC(b) if it is different from
the true efficiency evaluated in data. Thus,

NB = fBN and NB(b) = se(b)eMC(b) fBN.
(A.2)

Also, if we define a mistag rate that has not
been corrected for the possible presence of b
jets in the same sample, mraw(b) = N(b)/N,
then we may write equation A.1 in the follow-
ing way:

m(b) =
mraw(b)N − se(b)eMC(b) fBN

N − fBN

=
mraw(b) − se(b)eMC(b) fB

1 − fB
. (A.3)

We can write an analogous expression for the
efficiency of b jets passing a given bness cut:

e(b) =
eraw(b) − sm(b)mMC(b) fL

1 − fL
(A.4)

where eraw(b) is a “raw” efficiency uncorrected
for the presence of non-b jets in a sample,
mMC(b) is the mistag rate as measured in MC,
corrected to match data by a scale factor sm(b),
and fL is the fraction of light-flavor (here de-
fined as non-b) jets in the chosen sample.

Note that the determination of the mistag
rate depends on the calculated value of the ef-
ficiency (through the scale factor term se(b)),
and that in turn the determination of the ef-
ficiency depends on the mistag rate (again
through the scale factor sm(b)). Similarly, the
uncertainties on these quantities (see below)
depend on each other in a non-linear fashion.
Thus, we use an iterative procedure to solve
for the mistag rate, efficiency, and their uncer-
tainties. We calculate the mistag rate first us-
ing a value of se(b) = 1, and find that the val-
ues of e(b) and m(b) converge (and their uncer-
tainties) very quickly.

The uncertainties on these quantities may
also be calculated from the expressions above.
For the mistag rate,

σ2
m(b) =

mraw(b)(1 − mraw(b))
N(1 − fB)2

+

(
σe(b) fB

1 − fB

)2

+

(
σ fB[se(b)e(b) − m(b)]

1 − fB

)2

. (A.5)

The first term is a binomial uncertainty on the
raw mistag rate of the sample, and is the term
related to the statistical uncertainty of the sam-
ple used to determine the mistag rate. The sec-
ond term comes from the uncertainty on the
measured value of e(b), which can be calcu-
lated using a similar expression, and is done so
iteratively, as σm(b) and σe(b) depend on each
other. The final term is due to the uncertainty
on fB, which will depend on the choice of MC
and the region in which MC and data are com-
pared. A similar expression determines σe(b).

Appendix B. Tagging Efficiency Determi-
nation

Similar to our calculation of the mistag
rate, we calculate the efficiency observed in
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data using equation A.4. Both eraw(b) and
sm(b)mMC(b) = m(b) can be calculated easily
by counting events above a given bness thresh-
old in the data and MC respectively. Because
of the different competing processes in our tt̄
sample (there is a significant contribution from
W + light flavor jets and W + bb̄ processes), it
is best to break fL into these most significant
subsamples:

fL =
f W j j
L NW j j + f Wbb̄

L NWbb̄ + f tt̄
L Ntt̄

NW j j + NWbb̄ + Ntt̄
(B.1)

where NX is the number of events predicted by
MC in subsample X, and f X

L is the fraction of
non-b jets in subsample X. We assume that the
MC correctly reproduces the values of f X

L . To
determine se(b) = e(b)/eMC(b), we write down
a similar expression for the efficiency in MC
using the efficiency of each subsample in MC:

eMC(b) =
1

NW j j + NWbb̄ + Ntt̄

∑
X

eX(b) f X
B NX

(B.2)
where, as before, NX is the number of events
predicted by Monte Carlo in subsample X, f X

B
is the total fraction of b jets in subsample X,
and eX is the efficiency of b jets passing a par-
ticular bness cut in subsample X. We assume,
again, that the Monte Carlo correctly repro-
duces the values of f X

B .
Given Equations B.1 and B.2, we modify

our equation for determining the uncertainty
in the calculated efficiency. We obtain the un-
certainty by calculating the uncertainty of the
quantity (e(b) − eMC(b)), and find

σ2
e(b) =

1
(1 − fL)2

(
eraw(1 − eraw)

ND
+ (σm fL)2

)
+

∑
X

σ2
X[

NMC(1 − fL)
]2×[

(e + smm)( fL − f X
L ) + f X

B (eMC − eX)
]2

(B.3)

where the latter term represents a sum over
each of the MC subsamples. NMC and NB are
the total number of events and events with b
jets in the MC, and σX is the uncertainty as-
signed to the number of events in each MC
subsample. Because we compare only the nor-
malizations of data and MC in our determina-
tion of efficiency (and mistag rate) scale fac-
tors, the uncertainty on the number of events
in each MC subsample need only reflect the
relative uncertainty on the fraction of events
each subsample contributes to the whole. We
assign σWbb̄ = 20%, and σW j j = 8.72% and
σtt̄ = 6.78% based on a fit to the distribution
of the sum of the highest two bness jets in tt̄
events.
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